High Resolution Point Clouds from mmWave Radar
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Firefighting robot navigating
thick, dense smoke

Cameras and lidars suffer
in smoky environments



Single-chip Millimeter-Wave Radars for through-smoke perception
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Problem with Single-chip Millimeter-Wave Radars

Lidar with 0.1° angular resolution
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Camera with ~0.01° angular resolution
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Single-chip mmWave radar with
~15° angular resolution



Past Approaches
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Odometry Specific
Machine Learning
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Synthetic Aperture Radar Imaging

- Robot can move arbitrarily
- Robot can move slowly x
- Robot can choose to even remain static

Higher-level Application Specific
Machine Learning



Our Approach
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Why is this hard?
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Single-chip mmWave radar Low resolution camera image

Radar Data very different fromm Camera Data
for Machine Learning



RadarHD: Our Overall Solution
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Pre-Processing Architecture Choices Loss Functions

Check out the paper for detailed design decisions!



RadarHD Hardware, Data and Implementation
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RadarHD Qualitative Result
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RadarHD: Our Solution
(also only using a
single-chip radar)

Check the paper for quantitative results!
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Perception on top of RadarHD
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Running SLAM on Cartographer
using RadarHD Output




RadarHD in smoky environments
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High Resolution Point Clouds from mmWave Radar

Enabling quality perception in occluded scenes

Deep learning super resolution of single-chip radar
to get lidar-like point clouds

A large raw radar-lidar indoor dataset

Use the generated high-res radar point clouds for
perception tasks like odometry and mapping
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