High Resolution Point Clouds from mmWave Radar

Firefighting robot navigating thick, dense smoke

Cameras and lidars suffer in smoky environments

Single-chip Millimeter-Wave Radars for through-smoke perception

Problem with Single-chip Millimeter-Wave Radars

Lidar with 0.1° angular resolution

Camera with ~0.01° angular resolution

Single-chip mmWave radar with ~15° angular resolution

Past Approaches

Synthetic Aperture Radar Imaging

- Robot can move arbitrarily -
- Robot can move slowly -
- Robot can choose to even remain static -

Higher-level Application Specific Machine Learning

Our Approach

Why is this hard?

Single-chip mmWave radar

Low resolution camera image

Radar Data very different from Camera Data for Machine Learning

RadarHD: Our Overall Solution

Check out the paper for detailed design decisions!

RadarHD Hardware, Data and Implementation

RadarHD Qualitative Result

Raw Single-Chip Radar

RadarHD: Our Solution (also only using a single-chip radar) 64 beam Mechanical Lidar

Check the paper for quantitative results!

Perception on top of RadarHD

Running SLAM on Cartographer using RadarHD Output

RadarHD in smoky environments

High Resolution Point Clouds from mmWave Radar

- Enabling quality perception in occluded scenes
- Deep learning super resolution of single-chip radar to get lidar-like point clouds
- A large raw radar-lidar indoor dataset
- Use the generated high-res radar point clouds for perception tasks like odometry and mapping

