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ABSTRACT

Localizing mobile phone users precisely enough to provide AR con-
tent in theaters and concert venues is extremely challenging due
to dynamic staging and variable lighting. Visual markers are often
disruptive in terms of aesthetics, and static pre-defined feature maps
are not robust to visual changes. In this paper, we study several
techniques that leverage sparse fixed infrastructure to monitor and
adapt to changes in the environment at runtime to enable robust
AR quality pose tracking for large audiences. Our most basic tech-
nique uses one or more fixed cameras in the environment to prune
away poor feature points due to motion and lighting from a static
model. For more challenging environments, we propose transmit-
ting dynamic 3D feature maps that adapt to changes in the scene in
real-time. Users with a mobile phone camera can use these maps
to accurately localize across highly dynamic environments without
explicit markers. We show the performance trade-offs resulting
from StageAR’s different reconstruction techniques, ranging from
multiple stereo cameras to cameras paired with LiDAR. We evaluate
each approach in our system across a wide variety of simulated and
real environments at auditorium/theater scale and find that our most
accurate technique can match the performance of large (1.5x1.5m)
back-lit static markers without being visible to users.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Mixed / augmented real-
ity;

1 INTRODUCTION

Mobile Augmented Reality (AR) has opened a realm of new possi-
bilities for enhancing user experiences in entertainment venues. By
leveraging mobile devices, artists have a new medium for presenting
virtual content that can be choreographed with live performances
and shared across the audience. Early examples of these types of
performances can be seen in ”Elements of Oz” [5], one of the first
AR-enhanced live theater productions, and bands like Miro Shot,
who recently won best XR experience at SXSW [6], with a live
hybrid XR performance. We are also seeing major label bands like
U2 and BTS adding in-venue live AR effects in their shows, along
with a number of immersive theater startups like AR Show [7]. Be-
yond these entertainment use cases, one could also imagine natural
extensions like AR-assisted services in concert or sporting venues
for navigation, friend-finding, advertisements, concessions, etc.

The main difficulty in providing AR experiences in entertainment
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environments is accurately estimating the 6-Degree-of-Freedom
(DOF) pose of each user’s mobile device. Current mobile AR appli-
cations achieve this through visual feature-based optical registration
or with specifically designed optical marker tags. Unfortunately,
most vision-based techniques struggle in entertainment scenarios due
to dynamic lighting and stage set changes that alter the visual event
appearance. Some pioneer performances have used self-illuminated
markers that are both large, intrusive, and must be carefully in-
tegrated into the aesthetics of the performance. To combat scene
dynamics, recent work [17,39,55] has explored using learning-based
approaches to improve the accuracy of localization results. How-
ever, these designs either rely on mobile device depth maps or need
to train scene-specific neural networks. Depth maps from mobile
devices can only be accurate at a short range (e.g., iPhone LiDAR),
and training on specific scenes is not realistic for live events.
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Figure 1: StageAR concept. Deploying fixed infrastructure sensors
to provide accurate localization for mobile AR.

In order to truly facilitate reliable device pose estimation in enter-
tainment settings, three key challenges need to be addressed. First,
a localization technique should be robust to lighting changes and
remain unaffected by significant scene shifts. Some existing systems
attempt to localize based on naturally occurring visual features in
the venue, which proves challenging in environments like theaters
or concerts where the backdrop dramatically alters with new sets.
Second, the system needs to operate from a considerable distance
and over a broad viewing angle. This aspect is particularly crucial
in entertainment applications to prevent them from being overly
intrusive and hence, potentially distracting from the main event or
disrupting a storyline. Finally, the system should provide an accurate
camera pose estimate without requiring substantial device movement
and operate across many users. This means supporting commodity
phone hardware without requiring users to add external peripherals
like IR sensors, which is a hassle, expensive, and logistically does
not scale well to large crowds of people.

In this paper, we present StageAR, a system that uses several
simple, but powerful approaches to enable scalable instant-on lo-
calization on standard mobile phones in highly dynamic live event
environments. StageAR uses the key insight that a small amount of
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Figure 2: StageAR design includes three techniques to increase
positioning accuracy. All three techniques use a centralized server
to filter features and select the best ones to send to mobile users.

calibrated fixed infrastructure in the environment (e.g., cameras or
depth sensors) can either filter poor visual features or even create a
dynamic set of features that can be periodically broadcast to users
for localization. In effect, by continuously updating features from
fixed calibrated sources, the entire current state of the stage becomes
the reference visual map for audience devices. However, creating
these live feature maps is challenging because not only do they need
to update rapidly when the scene or lighting changes, but the points
need to be registered in 3D for devices to determine 6-DoF pose
across a wide seating area. Figure 1 illustrates the high-level idea
of StageAR with fixed infrastructure sensors in a live event setting.
It is worth noting that once a device is able to localize, it can use
onboard visual-inertial tracking for relative changes over time. This
means that StageAR only needs to localize a device each time a
session is started or resumed from a paused state.

While exploring the design space of dynamic infrastructure-aided
visual localization, we found a number of solutions that trade off
accuracy and reliability with cost and complexity. StageAR pro-
vides three approaches that each improve performance at the cost of
additional fixed infrastructure hardware (shown in Figure 2). The
first approach builds from a visual feature-based mobile phone lo-
calization technique that assumes an installer creates a 3D map of
feature points while setting up the event. This is conceptually how
AR Kit/Core [9, 22] performs localization on pre-recorded maps.
Since dynamic components in the scene cause significant errors,
StageAR uses a fixed camera at a known position to filter out poorly
performing feature points. The fixed camera can then periodically
broadcast the most reliable subset of features to the audience. This
simple approach can work extremely well for environments that
have a reasonable number of static surfaces that are not completely
affected by lighting and occlusions. Our second approach goes one
step further by dynamically creating new 3D feature points through
the addition of multiple fixed cameras. The fixed cameras are at
known positions, allowing them to perform stereo depth estimation
of prominent features. The system also leverages the filtering of dy-
namic regions of the scene used in our first approach. This technique
works better than a static pre-scanned model but suffers in terms
of depth accuracy, especially if there are errors in the fixed camera
calibration. Stereo correspondence also struggles in low light condi-
tions with large baselines. To further improve system performance,
we present our most advanced system that uses one or more fixed
cameras in the audience along with a co-located 3D LiDAR that can
directly and more accurately determine the depth of visual features
detected by the cameras. In the case of LiDAR, we demonstrate
a mesh reconstruction approach that improves feature point depth
estimates given relatively sparse depth information. Meshes can also
be used in real time to aid the occlusion of AR content based on the
position of set components and actors.

Through a set of evaluations with real and simulated data, we
demonstrate the effectiveness of StageAR on multiple fronts. We
show it only requires a small number of fixed sensors deployed in
the environment to provide accurate crowd user localization. Most
importantly, it is able to operate in highly dynamic lighting and
staging environments for an extended period of time where state-of-
the-art methods fail.

In summary, the contributions of this paper are:
1. A set of techniques for “instant-on” phone localization in dy-

namic lighting and staging entertainment venues.
2. An intelligent feature filtering technique that extracts robust

features based on geometry and image.
3. Sensitivity study of using various hardware in visually chal-

lenging environments.
4. Open-source implementation of StageAR.

2 RELATED WORK

2.1 Passive Markers
Visual markers (fiducial markers) are a commonly used solution for
content registration in AR [26]. For the past few decades, there has
been extensive literature in terms of different coded visual markers
and optical markers, such as AprilTags [38], AR Tags [18], and
ARToolKit [52]. These markers/tags can be very effective in terms
of localization accuracy, low cost, and ease of use, but they have a
limited range and can often be quite obtrusive. In addition, marker-
based solutions are also shown to be vulnerable to security issues
because they are easy to copy and spoof [47]. On the other hand,
systems like Vuforia [57] can learn features from arbitrary images,
thereby avoiding such issues. However, these image-based systems
have restrictions on the number of tags they can support and often
exhibit lower robustness compared to specialized positioning tags.

2.2 Active Markers
A key limitation of the above passive visual markers is their high
reliance on lighting conditions and their ability to operate only
within short ranges depending on their sizes. To address these
issues, researchers have explored the use of active tags [8, 10, 12, 27,
42, 47, 58], which offer improved resilience to lighting conditions.
Among these approaches, visible light communication (VLC)-based
techniques [27, 42, 56] offer relatively coarse localization, work at
short ranges, require very low camera exposure settings to avoid
saturation (which is not ideal for AR), and require high blinking rates
(1KHz+ rates) that are not compatible with commodity displays.
Other active visual tags [8, 12, 47] are not practical in common
mobile devices as they either require a special vision sensor [12],
high camera frequencies (not yet compatible with state-of-the-art AR
tools such as ARKit/ARCore) [8], support relatively short ranges [8,
58], or are computationally very expensive and susceptible to motion
blur [47]. A more recent solution, FLASH [31], attempts the extreme
opposite, where data is decoded from potentially a single pixel across
multiple frames, avoiding the above issues. However, FLASH also
suffers from obtrusiveness and requires high resolution on large
displays to create a reasonably well-defined quad shape for tracking.

2.3 Model-based Approaches
Model-based methods localize users without the help of any markers
or tags in the environment. For instance, researchers have demon-
strated camera pose tracking methods for outdoor AR [43], which
can be utilized for estimating the pose given a known 3D model of
the environment and an initial camera position. Simultaneous local-
ization and mapping (SLAM) solutions can estimate the pose relative
to a known 3D model using visual or depth sensors [13,16,23,36,48].
Many modern headsets [28, 33, 51] and mobile AR platforms like
ARKit [9] and ARCore [22] employ SLAM to determine the device’s
pose without relying on initial camera positions. However, SLAM
necessitates acquiring a model of the space before determining a
location, leading to increased acquisition latency, and it struggles
in low-feature environments or when the scene undergoes changes.
These approaches often formulate the problem of determining the
camera pose through correspondences between 3D reference points
and their 2D image projections as the Perspective-n-Point (PnP)
problem [19]. A well-known and efficient formulation [30], which
is adopted by the ORB-SLAM solver [36].
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Figure 3: System configuration comparisons with StageAR’s most basic approach of static model dynamics filtering (a), dynamic features
reconstructed from stereo cameras (b), and then LiDAR + Camera based live model and feature generation (c). The full LiDAR-based system
can accommodate the most dynamics in terms of obstructions and lighting.

Table 1: Taxonomy of different pose tracking techniques for AR.

Technique Visible Ability to Adapt
to Scene Dynamics

Infrastructure
Cost

Backlit Tags Yes Good Low
Image Markers Yes Poor None

Static Scan No Poor None
Camera Filtering No Poor Low

Stereo No Medium Medium
LiDAR + Camera No Good High

2.4 Trackers and Machine Learning Approaches

Specialized Trackers: Most of the current commercial solutions
adopt beacons or trackers to localize the headsets. HTC Vive [24]
employs a sweeping IR laser to accurately detect horizontal and
vertical angles with high precision. However, this method necessi-
tates powered beacons to be installed in the environment and is not
optimized for long-range applications. Interestingly, the Oculus [37]
utilizes blinking IR LEDs on the headset, which are detected and
decoded by a stationary IR camera. However, it demands extremely
tight synchronization between the LEDs and the camera, which is not
feasible to achieve on mobile phones without specialized hardware.

Other approaches, such as motion capture systems [50] or RF-
based systems like GPS [40], 3D RFID tracking [32], and UWB
localization [14], have demonstrated increasing potential in support-
ing AR applications. These methods involve measuring the pose of
the tag and the device directly from an external system, enabling the
computation of a relative location in an image. However, they re-
quire costly infrastructure, additional hardware, and are not resilient
in cluttered or high multi-path environments or over large distances.

Recent Learning-based Approach [17, 39, 55] shows success in
dealing with scene dynamics in room-scale environments. However,
their reliance on high-resolution depth maps or scene-specific train-
ing is not applicable to the live performance application. The user’s
mobile device is incapable of long-range depth sensing, and training
scene-specific models does not adapt to live performance events.

Different from all of the above approaches, StageAR adopts a
non-obtrusive, highly accurate, and robust instant-on phone localiza-
tion by leveraging fixed sensor infrastructure support. StageAR is
robust to dynamics (e.g., lighting or changing stage objects) in the
environment because it uses highly confident features from external
cameras. As a result, StageAR offers high accuracy pose tracking
for scalable AR experiences in highly dynamic environments.

3 StageAR: SYSTEM DESIGN

Figure 3 shows StageAR’s three configurations. The first (a) uses a
single camera to periodically broadcast optimally selected feature
points from a static model, ensuring a broad spread and avoiding
blocked or dynamic erroneous features. Configurations (b) and (c)
illustrate methods for capturing dynamic feature points, noting that
dynamic point generation in a single-camera setup is not possible
due to the need for 3D data. Our dynamic system employs either
additional cameras for stereo depth or a more expensive, yet com-
pact and less noisy, LiDAR. Table 1 displays a taxonomy of various
techniques. StageAR’s markerless approaches, including Camera
Filtering, Stereo, and LiDAR + Camera, balance accuracy against
hardware costs, offering suitable options for different scene dynam-
ics. This section further details our feature filtering methods and
dynamic 3D feature selection process.

3.1 Static Model with External Camera Filtering
StageAR’s most basic approach for markerless mobile user localiza-
tion is to use RGB image feature matching against a pre-scanned 3D
model of the environment. The pose can be obtained by solving the
PnP problem. Typically, in the face of scene dynamics, the pose esti-
mation robustness and accuracy are improved using outlier rejection
techniques, such as Random Sample Consensus (RANSAC), that
search across all point pairs in hopes of minimizing error. However,
when there are significant changes to the scene, the assumption of
RANSAC, that the majority of the feature points are accurate, no
longer holds, leading to localization failure.
StageAR tackles this by employing fixed infrastructure cameras

to provide a frame of reference, filtering the moving features and
improving the accuracy. This idea and its associated filtering tech-
nique serve as a foundation for all of StageAR’s three configurations.
First, we can select the most prominent features that are not part of
a dynamic region, which we refer to as Geometry Based Feature
Filtering. Next, instead of randomly selecting points like RANSAC,
we have a Spatially Aware Feature Selector that picks prominent
points of interest.

3.1.1 Geometry Based Feature Filtering

The most intuitive approach to perform feature filtering given a static
scene model and fixed 2D camera is identifying feature motion in
2D image space. One can keep track of corresponding features
across frames and filter them based on relative 2D pixel location
differences. However, a critical limitation of this approach is that,
due to camera perspective projection and the lack of depth informa-
tion, minor image space motion may not accurately reflect minimal
3D movements. Equation 1 shows that for a 3D point (X ,Y,Z) in
the world coordinates, if its position on the XY plane is fixed, its
projection in image (u,v) space is proportional to its depth scaled
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Figure 4: Impact and effectiveness of StageAR’s various filtering techniques. (a) simulation scene is constructed with 3 different levels of
motion. (b) scene changes after 3 seconds. (c) challenging scene geometries that can lead to inconsistent depth estimation across frames. (d)
full feature set before filtering, where green points denote features extracted. (e) filtered feature from a fixed RGB camera. (f) significant
improvement in feature filtering with the aid of 3D geometry information.

by w and the camera focal length f . This means that the pixel shift
of the object in image (u,v) space is inversely proportional to the
distance Z between the object and camera.

Figure 4(a) shows a simulation scene setup with dynamically
moving objects placed at different distances with respect to the
camera. After applying a fixed threshold for 2D feature filtering,
the result can be seen in Figure 4(e). Compared to the full feature
set in Figure 4(d), only the fast-moving features that are closest to
the camera are filtered. To mitigate this, we can exploit a unique
opportunity given by the combination of an RGB camera and a
pre-scanned 3D model. By using the 3D model to derive the image
feature’s real-world coordinates, we can adaptively determine the
feature filtering threshold. We show in Section 4 that this filtering
alone significantly improves performance.[

u v
]T

= w
[

f (X/Z) f (Y/Z)
]T (1)

3.1.2 Spatially Aware Feature Selection

Once we pruned away the feature set using §3.1.1, we next identify
the subset of features that exhibit good spatial distribution properties.
We use two criteria to determine which features to broadcast.

On the Camera Side: we consider the spatial distribution of fea-
ture points across the scene to ensure the robustness of the PnP
algorithm. Spatial distribution involves both the spatial spread of
features in the image as well as their corresponding depth variations.
An optimal feature arrangement involves a well-distributed spatial
spread of feature points in 2D images at different depths, enhanc-
ing the robustness of PnP pose estimates. Conversely, having an
excessive clustering of nearby features in a small region, coupled
with relatively sparse features in the rest of the scene, leads to pose
ambiguity [29, 34]. To achieve this, we divide the image into even
block regions and calculate the percentage occupancy of blocks that
have at least 1 feature point. Then, we downsample features in each
block to a maximum of 5 features. Selecting the block size is highly
scene-dependent; we use an 8x8 block size in our evaluation, and
this is demonstrated in Figure 4f.

On the User Device Side: we prioritize frames with reduced motion
and sharper images for feature extraction and matching. Unlike the-
aters that can afford expensive fixed infrastructure cameras with high

frame rates, resolution, and large sensor sizes. Average user mobile
cameras often have significantly worse image quality in the presence
of high scene dynamics or user motion. Image features may appear
less sharp due to the camera’s shutter speed in low light conditions.
For image feature extraction, sharp images offer more distinct edges,
corners, and texture details, providing stronger gradients and unique
features. To identify frames that favor image feature extraction, we
use the Laplacian variance [49] as the criteria to determine user im-
age sharpness and select frames that have the sharpest details. The
variance threshold is calculated at the beginning of every session
where users hold the mobile phone steadily. This threshold is highly
dependent on lighting, camera, etc., in our experiment in §4 we used
33.56 as the threshold.

3.2 Dynamic Feature Map Generation

While employing fixed RGB cameras and static scene models (as
discussed in Section 3.1) effectively identifies small-scale object mo-
tions and leverages stationary features, this approach has limitations.
It struggles particularly in environments with high scene dynamics,
such as performance events characterized by dramatic lighting and
staging changes. These changes often lead to localization failures,
as most scene features are altered under dynamic conditions. This
challenge leads us to explore an essential question: How can infras-
tructure cameras be utilized to update 3D feature points in real time,
thereby supporting more dynamic scenes?

Our first approach in dynamically creating feature maps uses
a multi-camera based stereo depth estimation to obtain prominent
2D to 3D feature correspondence. The second and most advanced
method combines a LiDAR sensor with the camera to achieve more
accurate 3D feature coordinates, and the intermediate dense mesh
created by this method can be used for effective occlusion handling
when placing AR content.

3.2.1 Dynamic Features from Fixed Stereo Depth

Robust 3D Feature From Stereo Depth: With fixed stereo camera
pairs, we can obtain depth maps by performing feature matching on
calibrated camera pairs to produce a disparity map, which can later
be processed into a depth map. Despite this seemingly promising
approach to obtaining 3D features in real time, retrieving accurate
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depth information from stereo cameras is challenging for two rea-
sons. First, stereo depth estimation relies on using accurate and
dense feature correspondence to infer and interpolate pixel depth.
The nature of live events (lighting change, scene dynamics) causes
noisy feature correspondences, leading to noisy stereo depth maps.
Second, stereo triangulation produces noisy results due to imprecise
camera calibration (both intrinsic and extrinsic). To mitigate these
issues, we employ two criteria to better select reliable 3D features
from stereo camera pairs.

The first criterion is to use only the depth value produced by
triangulating matched features instead of generating depth for the full
camera view. This provides better accuracy because it avoids using
noisy values generated from interpolation between matched features.
The second criterion leverages the depth estimation result to track
features’ 3D motion and preserves only slow-moving features. We
track each feature’s 3D location across consecutive frames to derive
3D velocity and only keep features that exhibit slow-speed motion.
On top of this, we observed stereo depth estimation generally does
not work well in situations where there is complex geometry, causing
depth ambiguity. This is demonstrated in Figure 4(c); it is well
known that complex scene geometry contributes to depth estimation
ambiguity. Such ambiguity will cause depth readings to fluctuate
significantly and present themselves as sudden 3D motion that is
filtered. We can obtain a set of highly confident 2D to 3D feature
correspondences through these two techniques, shown in Figure 4(f).

Impact of Stereo Camera Configuration: The key to accurately
triangulating 3D feature points is the precise calibration of stereo
pairs and the baseline separation between cameras. The accuracy of
stereo depth estimation increases with a larger baseline between two
cameras. However, as the stereo baseline increases, it becomes more
difficult to match points due to the diverging camera field-of-view
(FOV). This effect is observed and evaluated in Figure 11. As the
stereo baseline increases, the system becomes more susceptible to
camera calibration error in practice.

To understand the impact of calibration error on tracking per-
formance and whether stereo depth estimation is feasible when
considering fixed installations in theater settings, we study pose
tracking accuracy under different calibration error with stereo pairs.
Figure 5 shows the pose accuracy in a simulated scene using our fea-
ture selection method with varying calibration errors. We simulated
a perfect pinhole camera and introduced translation and rotation
errors to the camera’s extrinsic pose calibration. We observed a
significant drop in accuracy with increasing calibration errors. As
shown in Figure 5a and b, we find that the median translation and
rotation errors increase by 630% and 681%, respectively, when there
is a 10 cm calibration error compared to the ideal case with no cal-
ibration error. We also quantify an AR pixel error metric (defined
in §4.2) that more faithfully reflects AR experiences. Figure 5c
shows that AR pixel error also increases as the calibration error
increases. The result shows that a realistically well-calibrated stereo
pair (2.5cm average error) can perform well for localization tasks.
Ground truth surveying equipment such as Total Station [4] can be
used to calibrate the infrastructure camera at millimeter accuracy.

In addition to the pose accuracy and AR pixel error, we also found
a significant number of failures in localization with stereo depth-
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assisted features. Even with perfect camera calibration, we found
around 40% failures in the results under dynamic lighting conditions.
This is mainly due to the limited number of matched features when
using only two stereo cameras. Because of the limited number of
cameras, only a subset of matched stereo features is selected for
the final pose estimation, resulting in a failure to find a solution to
localize the users. This effect is also reflected in Figure 11. A natural
solution to this issue is deploying more camera sensors around the
venue to obtain better coverage and provide more candidate features.
Although having more cameras can decrease the number of failures,
it still suffers from high pose error because of inaccurate stereo depth
estimation. To address these issues, we introduce LiDAR-assisted
pose tracking, which we will explain in the next section.

3.2.2 LiDAR + Camera based Pose Estimation

To improve depth sensing performance, our final system measures
depth with a LiDAR paired with one of the cameras. This brings up
one final challenge: LiDAR points tend to be significantly sparser
in resolution compared to high-resolution cameras. While com-
mercially available LiDARs generally provide a spatial resolution
that ranges from 2048 x 128 to as low as 512 x 16 points, it is far
from adequate to associate precisely feature points extracted from
high-resolution camera images with 3D LiDAR point clouds. Sev-



eral methods can be used to improve the resolution of point clouds
(we show the trade-off between each method in Figure 13). First,
we can upsample the sparse LiDAR point cloud to camera resolu-
tion, ensuring pixel-to-pixel correspondence for each feature point.
However, upsampling a low-resolution image to higher resolution
does not recover the already lost high-frequency information, and
interpolation at depth discontinuity causes artifacts. Second, instead
of upsampling depth images, we can use a nearest-neighbor search
to associate the 2D feature point to the nearest 3D point location.
This results in even higher error due to incorrect depth information.

Instead of interpolating sparse point clouds or performing nearest-
neighbor searches to gain data association, we employ mesh recon-
struction to use dense surfaces to retrieve accurate 3D correspon-
dence. Dense mesh reconstructed from a sparse point cloud acts as
surface interpolation and avoids the issues presented in point cloud
interpolation, such as artifacts at depth discontinuity.

We take a two-step solution to fuse sparse LiDAR point cloud
with the camera image feature; the process is described in Figure
6. First, starting from a LiDAR range measurement, we obtain all
point cloud coordinates and use them to obtain (activate) a set of
neighboring voxel blocks. Once all the voxel blocks neighboring
the points are retrieved, we can compute and update the implicit
surface with Truncated Signed Distance Function (TSDF) represen-
tation [25], a well-known technique from computer graphics. The
reconstruction of mesh from TSDF provides robustness to model
accuracy due to: (1) TSDF is tolerant to noisy sensor data, as it
estimates the underlying surface by taking a weighted average of
multiple noisy sensor readings. (2) every triangle in the mesh is
extracted considering neighboring surface information, leading to
more accurate and smoother surfaces. After obtaining the mesh,
we fuse camera images to find the 2D image feature to 3D surface
correspondence. This fusion is achieved by marching a ray from a
2D image plane coordinate until the camera ray intersects with a
surface. The resulting 3D coordinate of the ray-mesh intersection is
the position of the image point in the 3D world. Figure 7 visually
shows the intermediate results of this process. In the middle of the
figure, we see a dense mesh reconstructed from 3 simulated LiDAR
sensors (each with a resolution of 2048 x 128); the red dots show
the 3D correspondence of matched image features.

3.3 Implementation

StageAR proposes using fixed infrastructure sensors deployed
around the stage to snapshot the live environment and localize mo-
bile users. Its implementation consists of three main components:
(1) image feature extraction and matching, (2) image to depth data
association, and (3) feature broadcasting.

Feature Extraction and Depth Association: To perform 2D
feature extraction and matching, we use SuperPoint [15], a popular
and robust neural feature extractor for 2D image feature extraction,
followed by SuperGlue [45], a relibale graph neural network based
feature matcher. We use OpenCV’s [11] stereo triangulation for
stereo dynamic feature creation to get the 2D feature’s corresponding
depth. For the static model and LiDAR mesh construction, we use
Open3D [60] TSDF implementation and its raycasting based on the
Intel Embree library [53]. After obtaining image features and their
3D locations, we solve for user pose with the EPnP algorithm [30]
in OpenCV.

Feature Broadcasting: In order to deliver AR quality localization
to a large crowd of users, we design StageAR to be scalable. After
obtaining a set of feature points and their 3D locations, we broadcast
them to all users, and the PnP algorithm is executed on individual
user devices. Solving the PnP problem requires a calibrated camera,
and we obtain this information from user devices. Camera calibra-
tion information such as intrinsic and distortion can be obtained
easily in both Andriod and iOS devices through API calls [44].

Figure 8: Virtual object with same translation error exhibit dramati-
cally different screen-space error at different distances

4 EVALUATION

4.1 Experimental Setup
We evaluate StageAR in both simulation and real-world scenarios.
For simulation, we use Blender [20] to create live events with pro-
grammable lighting and moving objects, with a combination of
photogrammetry models and synthetic models. Figure 10 shows two
different complexity scenes.

We simulate two types of audience configurations for each sim-
ulated scene: (1) 9 users spread across the audience seats and (2)
a large-scale setup with 600 users. 3 virtual RGB cameras and a
downscaled Ouster [2] LiDAR-like depth camera are placed at the
rear of the stage. To mimic real-world sensor calibration error, an
average of 2.5 cm translation and 2° rotation error were introduced
to all fixed cameras. For the LiDAR data, an average 2.5 cm depth
noise was added according to the LiDAR hardware datasheet.

Besides extensive simulation, we conducted a real-world evalua-
tion in a Studio theater. We set up the lighting and stage dynamics of
a live performance with changing spotlights directed at the stage and
projected concert videos on the stage screen. A dozen people stood
and moved around the stage to replicate the movement dynamics
typical of live performers. This setup is shown in Figure 9a and
Figure 12.

Hardware setup: We use Sony α7RV [3] for all of our fixed RGB
cameras, capturing videos at 4K 60 FPS. Ouster OS-0-128 [2] Li-
DARs were used to collect point clouds at 10 Hz, at a resolution of
2048 x 128. All camera intrinsics are calibrated with a checkerboard,
and extrinsics are calibrated with 1.5 meter Apriltag [54]. Calibra-
tion between LiDAR and cameras is obtained using line and plane
correspondences [59]. Geometric calibration accuracy is verified by
reprojecting the Near-IR image returned by LiDAR to the camera
frame. They are synchronized with a starting soundtrack via post-
processing. The LiDAR point cloud data is processed with a Linux
laptop with i9-12900H, 64GB RAM, and RTX 3080 Ti GPU. User
devices are iPhone 12 Pro, shooting at 4K 60 FPS with main camera.

4.2 Evaluation Methodology
To precisely measure how localization error affects AR content
overlay, we adopt AR Pixel Error (APE) metric, based on the display-
proportional error metric by Miller et al. [35]. We also calculate
translation and rotation error, where the translation is calculated
as the Euclidean distance between two positions in meters, and
rotation error is computed using axis-angle representation [21] in
degrees. The APE metric quantifies the pixel shift on screen space
to reflect the impact of camera perspective projection on AR object
placement. Illustrated in Figure 8, this metric demonstrates how
objects at varying depths relative to the user show different screen
space pixel shifts. Specifically, objects farther from the user exhibit
smaller pixel shifts compared to nearer objects, clearly linking the
metric to the actual user experience, beyond just geometric errors.

APE is computed as per Equation 2, where we define εxy to be
the xy component of the geometric translation error, and εz as the
z component error. dist is the Euclidean distance between the user
camera and the target object, fx represents the camera focal length
(pixels), and Hx refers to the horizontal screen resolution.
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(a) Theater stage setup. (b) Localization error over 4.5 mins.
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Figure 9: StageAR’s real-world accuracy when compared to AR Kit
and Colmap. Evaluation is conducted during a performance in a
theater environment. Apriltag for ground truth only.

APE =
εxy

|dist + εz|
∗ fx

Hx
(2)

Beyond the APE metric, we also qualitatively compare StageAR
by rendering AR content linked to physical features in the environ-
ment for reference.
Comparing Approaches. We compare StageAR’s three configura-
tions against Colmap, AR Kit, and a Static Model approach.
• Colmap [46] is a Structure-From-Motion library that serves as our

baseline; we first gather around 40 camera images of the theater
stage before the performance. With these images, we construct
a dense point cloud using Colmap. This map is then utilized to
localize user cameras during the performance, and we resize the
point cloud to a real-world scale based on LiDAR measurements.

• Apple AR Kit Multi-User demo application [1] was custom
adapted for baseline evaluation. This process involves two
iPhones. The first pre-scans the stage using LiDAR and a cam-
era to create a 3D feature set, then broadcasts this to the second
iPhone. The second device uses its own visual features and Li-
DAR (when range allows) to perform localization against the
received map or switches to local tracking if localization fails.

• Static Model of the environment obtained from photogrammetry,
and the model is adjusted to the actual scale based on LiDAR
point cloud. Based on this pre-scanned model, we perform image
feature matching and solve for user pose while the actual stage is
introduced with dynamic lighting and object motion.

• StageAR - External Filter (§3.1) is the first method introduced
in StageAR using a fixed camera deployed within the stage to
perform geometry and spatial feature filtering.

• StageAR - Stereo Depth (§3.2.1) is our second approach that
creates dynamic feature maps from fixed stereo pairs. It takes
snapshots of the evolving scene and extracts the most confident
dynamic features to perform localization.

• StageAR - LiDAR + Camera (§3.2.2) leverages a LiDAR sensor
deployed within the scene to reconstruct mesh in real-time. It then
uses a co-located RGB camera to provide image feature matching
and extracts 3D features from the mesh geometry.

4.3 Robustness Results of StageAR
Beginning with a real-world evaluation with a scene setup as shown
in Figure 9a, we find that Colmap started to perform reasonably for
only the first one or two seconds. After the scene setup changes, it
failed to localize almost instantly (at 3 seconds). On the other hand,
we used a pre-scanned map generated from the AR Kit to localize
a new audience. The user never got localized at any point during
the performance. This shows AR Kit does not perform well under
significant scene changes. Our method performs consistently well
(average 0.06 APE) throughout the 4.5-minute performance session.

(a) Pixel Error CDF of low complexity auditorium

(b) Pixel Error CDF of high complexity theater

Similar performance

Figure 10: Simulation scene accuracy of various techniques
StageAR provides. (a, b) show AR Pixel Error in low and high
complexity environments. Worth noting in (a), all techniques except
Stereo Depth performed similarly due to the low scene complexity.

Regarding simulation environments, Figure 10 shows the cumu-
lative distribution of APE with StageAR comparing with different
strategies. We highlight the robustness of StageAR under a high
complex (theater) environment in Figure 10b and compare it with
a low complex (auditorium) environment in Figure 10a. As shown,
most of the techniques in the low-complex environment perform
similarly but differ significantly under highly complex scenes. The
key difference is that most of the models have sufficient features to
localize the users in a low-complex scene while they struggle to find
highly confident features in more complex dynamic scenes. As we
move from a static feature map (External Filter) to leverage dynamic
features (Stereo) and more accurate depth estimation techniques (Li-
DAR mesh), the localization accuracy improves, with LiDAR being
the most accurate one (300% more accurate than the static model
on average). The static model approach clearly suffers due to scene
dynamics. Note that the stereo depth based tacking doesn’t perform
well primarily due to calibration error and limited correspondence.

We also find a significant increase in failed attempts to localize
users with high dynamic lighting and stage changes. We observe
almost no change (both around 18%) in terms of failures for LiDAR
+ Camera setup and 20% increase (from 40% to 60%) in stereo
depth based tracking. This is due to the fact that the stereo based
solution requires taking an intersection of features that exist in at
least 3 cameras (2 stereo cameras, 1 audience device), significantly
limiting the number of available features. LiDAR + Camera does
not suffer from the same due to 3D depth information and image
features being independent of each other, eliminating the need to
find common feature points across more than two cameras.

Impact of Fixed Camera Placement on Accuracy: To understand
the impact of cameras and sensor location within the scene on overall
accuracy, we evaluate the coverage of both stereo cameras and
LiDAR + Camera. For this, we simulate a large scene with 600
users sitting in front of a theater stage (audience seats 15 - 27 m
away) in a hemisphere. Figure 11 shows the spread of pose accuracy
with three configurations of camera and LiDAR sensors. Figure 11
(a) demonstrates the coverage of the LiDAR + Camera system that
ranges from 1 camera and 1 LiDAR up to 3 cameras and 3 LiDAR.
From this study, we find that with just 1 camera and LiDAR, we can
localize users seated within roughly 90° of the camera perspective.
With the addition of cameras, we can cover a wider range of users
with significantly lower localization failure. However, there is a
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Figure 11: Impact of different sensor choices and placement configurations on user experience, simulated with 600 users sitting around the
theater stage. Heatmap (a) shows the distribution of AR Pixel Error for LiDAR + Camera configuration. It also shows that having more cameras
will lead to fewer failures in localization. Heatmap (b) shows AR Pixel Error using two stereo cameras with different stereo baselines.

diminishing return by adding more LiDARs without changing the
number of fixed cameras, albeit a significant decrease in the number
of failure cases in localizing audience cameras.

We also compare the stereo depth based system with two different
configurations as shown in Figure 11b: a smaller baseline (on the
center and one side of the stage), and a large baseline with cameras
on two sides of the stage. With stereo pairs spread across a larger
baseline, the APE significantly increases compared to a smaller
one. This shows that if we want to achieve similar localization
accuracy for the same number of audience users across the scene, we
need to deploy more cameras compared to LiDAR-based solutions.
However, that only increases the localization success rate, not the
accuracy of stereo-based tracking. StageAR’s LiDAR + Camera
solution is the most accurate of all variants (despite the highest cost).

Table 2: Accuracy impact of time dilation (using features collected
at an earlier timestamp to match against a later timestamp) on
StageAR’s LiDAR + Camera approach in simulation.

Time Dilation (s) Mean
(AR Pixel Error)

Standard Deviation
(AR Pixel Error)

0 0.000645 0.0000594
1 0.035 0.0105
2 0.0388 0.0228
3 0.0522 0.0281
4 0.0979 0.035

4.4 Impact of Time Dilation
In a realistic setting, audience members are seated at different lo-
cations within the scene, and their cameras take time to adjust to
different lighting conditions, focus, and capture a frame with sharp
detail. This means the amount of time varies between the server
broadcasting the feature set and the actual time the audience device
selects the best frame to perform pose estimation. We refer to this
as time dilation and evaluate its impact on content overlay accuracy.
Table 2 shows the APE with different time dilation values. We see
that under 2 seconds of time dilation, the content drift in 2D screen
space is averaged around 3.5%. As the time differences increase
to 4 seconds, the screen space placement error increases to nearly
10%. This showcases the need for a dynamic feature generation and
broadcasting frequency of around 2Hz (for acquisition) if the object
is to achieve the best user experience. It is worth noting that onboard

tracking (AR Kit, AR Core) will keep the AR content registered
once the device is localized without needing to relocalize globally.

4.5 Qualitative Results from Studio Theater Live Event
Next, we evaluate StageAR’s performance in real live theater en-
vironment. Figure 12 shows the screenshots of a photogrammetry
model of our theater scene with an AR overlay showing demon-
stration content. This content would likely be authored in a virtual
environment that is then overlaid into the real theater scene during a
performance. The purple arrow in the scene is a visual guiding sign
of where the podium is located, and a yellow duck is placed on the
ground, acting as virtual content. Figure 12 (b-d) visually demon-
strates the impact of different APE on what the users would see on
their screen. In Figure 12 (e-h), we show StageAR’s performance
from four audience camera perspectives, with AR content in two dif-
ferent lighting conditions and the corresponding APE. As shown, an
audience camera with low lighting has a higher error rate compared
to an audience with regular good lighting. The respective error can
be gauged by referring to the pixel error impact on displaced overlay
in Figure 12(b-d).

4.6 LiDAR + Camera Data Association Benchmarks
To evaluate our LiDAR + Camera system, we benchmark various
point interpolation alternatives described in §3.2.2: (1) Bi-cubic
interpolation, (2) KD-tree based nearest-neighbor search, and com-
pare it with the mesh-based system. Figure 13 shows the impact
of different LiDAR resolutions on APE with each of these variants.
As shown on the left of Figure 13, StageAR’s mesh-based system
outperforms Bi-cubic and KD-tree methods at the highest LiDAR
depth resolution (2048x128) and performs even better with lower
resolutions. More importantly, the right side of Figure 13 shows that
StageAR’s mesh-based system has almost no failures in localization
despite the stage dynamics because of its dense surface reconstruc-
tion. On the other hand, the upsampling and nearest-neighbor search
methods have up to 40% failure rates in localizing the users. This
demonstrates the effectiveness of our choice of LiDAR mesh recon-
struction over interpolating point clouds for 3D correspondences in
pose estimation.

4.7 Latency and Scalability Analysis
Computational Latency of StageAR is shown in Table 3 versus
that of Colmap. We categorize the computation stages based on
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Figure 12: Real world evaluation of StageAR in Studio Theater. (a) shows correct AR content overlay in a photogrammetry 3D model of the
theater. (b-d) shows the perceptual difference of different levels of APE. (e-h) shows the real-world benchmark performance of our LiDAR
approach from different audience angles and lighting conditions. Apriltag on the projector screen is used as the user pose ground truth.

Figure 13: Different LiDAR data association techniques

where they are executed. 3D feature map generation is executed on
a Linux laptop; Colmap takes nearly 1 minute to generate a sparse
feature map from 40 images. This is mostly due to global bundle
adjustment that refines camera registrations. In comparison, both
of our methods perform extremely efficiently as they operate on a
smaller and highly confident feature set that does not need global
optimization. We compute the latency on the mobile side with a
Jetson platform. Given the 3D feature maps are transmitted to the
user device, we record the time it takes to localize a new frame.
Similarly, both our methods finished with half of Colmap’s time.

Scalability of StageAR is characterized as the bandwidth required
for the server to broadcast features to mobile devices for feature
matching. When the server transmits 1024 feature points and descrip-
tors to one device under LZ4 or ZIP compression, the bandwidth is
measured at around 1MB per frame. The number of features broad-
cast after StageAR feature filtering is around 200 feature points,
measured at around 230 KB per frame.

Table 3: Computational latency comparison between StageAR’s
Stereo and LiDAR approaches and Colmap.

Method Feature Map
Generation

User Localization
Jetson iPhone

Colmap 57.12 s 2.76 s N/A
StageAR Stereo 0.32 s 1.09 s 0.98 s
StageAR LiDAR 0.14 s 1.09 s 0.98 s

5 DISCUSSION

StageAR has a number of drawbacks in practical deployments. First,
older mobile cameras struggle in low light conditions. Many of
them also do not have accessible camera intrinsics. Thankfully, most
modern phones with AR Kit/Core now have APIs that expose camera
parameters. Another pain point is infrastructure calibration. One
advantage of the LiDAR approach is that it can be pre-calibrated
into a single sensor unit. It then just needs to be registered with the
virtual content through software. It is also worth re-iterating that
after a device is localized, it can internally track for tens of seconds
to minutes. This means the system does not need to relocalize
constantly but instead localize the device at the start of a new session.

In this paper, the mobile client was a custom application that
could be run natively on a mobile phone or processed externally on
a computer. We are working on a WebXR version of the system that
doesn’t require installing any software. Unfortunately, it is more
challenging to implement efficient large-scale broadcast of data in
web apps. This may require installers to provision more capable
wireless in instrumented venues. We also envision a future where the
audiences wear headsets with accommodation-supporting interactive
3D displays [41], where StageAR provides robust localization for
accurate overlay of 3D interactive virtual content.

Finally, one might argue that the overall cost of our system is
quite high when including equipment like LiDAR. In practice, this
is well within the standard cost parameters of an industrial-grade
production. For smaller-scale events, our single-camera solution,
along with additional AR cue lighting, might be more than adequate.

6 CONCLUSION

In summary, localizing mobile users in dynamic settings like theaters
can be efficiently managed using sparse infrastructure and real-time
adaptive techniques. Our research demonstrates that using fixed
cameras to filter out unreliable feature points due to environmental
changes yields reliable results. Additionally, transmitting dynamic
3D feature point maps that adjust to real-time scene alterations offers
a solid approach for more complex environments. We evaluated
numerous reconstruction methods, establishing that mobile phone
cameras can precisely localize in dynamic scenes without explicit
markers. Our approach is shown to equal or exceed large static
marker performance while being less intrusive, paving the way for
scalable, high-quality AR experiences.
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