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ABSTRACT
It has long been a goal of immersive telepresence to capture and
stream 3D spaces such that a remote viewer can watch from any
location or angle within the scene. This demonstration presents
Mosaic, a new distributed 3D scene capture system that uses tex-
tured mesh data representation for streaming a 3D volumetric video
of a space to remote viewers. Compared to more common point
cloud based methods, we show that textured mesh data requires
less bandwidth and yields the same visual quality. However, tex-
tured mesh reconstruction is compute and memory intensive, mesh
simplification is not easily parallelizable, and texture maps lacks
spatial and temporal coherence. Mosaic tackles these challenges by
examining each computational stage and determines how they can
be efficiently distributed across multiple compute nodes to reduce
overall latency, minimize bandwidth, and maintain quality. We then
provide an end-to-end latency and bandwidth breakdown that can
be used to target future acceleration work.

CCS CONCEPTS
• Computing methodologies→Mixed / augmented reality;
Virtual reality; Mesh geometry models; Volumetric models.
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1 INTRODUCTION
One of the core challenges of any interactive and immersive telep-
resence application is the ability to capture and stream 3D scenes in
real-time. This requires combining high-rate sensor data from mul-
tiple depth sensors in real-time. Holoportation [3], Volograms [5],
and Project Starline [2] are just a few examples of emerging 3D
telepresence systems that are poised to deliver significant value for
several verticals in Industry 4.0 ranging from logistics and supply
chain to hospitality and healthcare. In the future, we envision a
volumetric telepresence platform composed of a mixture of fixed
sensors (to capture a working area) along with mobile sensors (on
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phones and headsets) to enhance/fill in regions of interest. In prac-
tice, this system should operate on standard networks (wired or
wireless with background traffic) and across the Internet.

Existing 3D scene capture systems fall into two categories: ones
that output RGB-D [4] or point cloud [1] representations and ones
that output textured meshes [6]. We can draw an analogy to 2D
graphics where mesh geometry is more akin to a vectorized format
and point cloud data is more like a rasterized representation. The
benefits of RGB-D and point cloud designs include the fact that most
sensors natively output such data representation and combining
sensor feeds into a larger scene is a simple, additive process which
reduces the computational burden on the capture side. However,
clients that consume this data are given the relatively complex task
of converting large data streams into a rendered geometries. In
contrast, meshes are easier to render at a client but require sensors
(or capture site) to perform necessary geometry creation.

A significant trade-off between these approaches is that RGB-D
and point cloud data are relatively inefficient and use significant
bandwidth to capture real-world scenes in high-quality. This is
due to two reasons: (1) mesh representations naturally capture
and compactly represent the often planar features found in indoor
spaces at much lower bitrates, and (2) mesh geometry makes it
easy to decouple geometry and texture resolution for efficient 3D
representation. For these reasons, Mosaic advocates for adopting
textured meshes as an intermediate data structure for streaming.

However, streaming textured meshes faces significant challenges.
Existing systems [3] rely on centralized 3D scene reconstruction
and, as a result, require extremely high data rates (e.g., Holopor-
tation requires 1-2Gbps bandwidth for each scene [3]) or take
significant time (seconds or minutes) to compress using standard
3D compression techniques. Existing designs also scale poorly with
the size of a scene due to the high compute and GPU memory
demands of doing full scene reconstruction on a centralized node.

2 SYSTEM OVERVIEW
We design Mosaic to leverage compute nodes deployed close to
cameras to perform partial scene reconstruction. A merging server
(deployed within the capture environment) then pulls together
the partial reconstructions and merges them into a single scene
description. The resulting system eliminates the compute and mem-
ory bottlenecks present in the centralized design since operations
are performed on smaller components of the overall scene. Fig. 1
shows a detailed system block diagram, Fig. 2 shows system latency
breakdown, and Fig. 3 shows a conference room test setup.

2.1 Distributed 3D Scene Capture
In order to alleviate the GPU memory and latency bottlenecks,
Mosaic splits the capture pipeline across many compute nodes
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Figure 1: Mosaic’s end-to-end scene capture pipeline.
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Figure 2: Breakdown of scene capture latency

Figure 3: Mosaic’s test setup. 4 Azure Kinect cameras with
compute nodes are circled in red.

where each node performs a per-camera scene reconstruction (i.e.,
TSDF volume integration) as well as mesh decimation. The sys-
tem merges these per-camera streams into a single 3D model on
separate compute nodes. A compute node and its GPU has suffi-
cient resources to support a single camera scene and the node can
reconstruct its scene and decimate with minimal latency.

2.2 Mesh Merging
Once the per-camera reconstructions are available at the merging
server, Mosaic merges all the partial reconstructions into a single
model. It is necessary to remove the cross-camera overlapping
regions for bandwidth efficiency. In theory, it is straightforward to
merge different mesh models (albeit assuming that they are from
the same coordinate system) by simply concatenating the two data
structures and remove duplicate triangles. However, in practice, the
camera pose as well as the cameras’ depth readings are not precise.
Hence it is difficult to observe perfect duplicates when merging

even if they are exactly the same geometry. We preserve only the
visible mesh layers and remove the redundant regions through (1)
connecting the the mesh boundaries by nearest neighbor search
and merge, (2) removing hidden mesh layers through raycasting.

2.3 Texturing and Atlas Generation
Once the partial mesh reconstructions from each camera view are
merged, our next step is to create a texture map and an atlas for
the mesh with the RGB frames from multiple overlapping camera
textures. The goal of this process is twofold: (1) creating a 3D to 2D
texturemap, so that a rendering client can use themap to project the
texture onto the geometry during rendering. (2) creating a texture
atlas by removing the camera views that are either not in depth
camera field of view or overlapping with other camera views.

3 DEMONSTRATION
Our demonstration takes the form of four Microsoft Azure Kinect
DK cameras with co-located computers (Intel NUC Extreme) dis-
tributed around a 3x3 meter space mounted on tripods. A back-
ground scene and users in the center are digitized in real-time and
transmitted to a 3D viewer through a wireless network link. The
real-time captured 3D scene is shown on a computer screen; it
can also be viewed in AR/VR headsets on a browser. In addition,
we show a breakdown of end-to-end latency and bandwidth on a
external monitor.

We target to show the following: (1) Real-time capturing, pro-
cessing, and streaming of volumetric content in the form of textured
mesh representation. (2) Live free-viewport viewing of captured
scene with wirelessly connected AR/VR headset and computer. (3)
Live statistics of end-to-end system latency and bandwidth.
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