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Figure 1: An example scene showing MeshReduce delivering live captured 3D video to devices with WebXR-enabled browsers.
MeshReduce captures the live environment as textured meshes, streams the captured scene to a split rendering framework, and
composites high-resolution remote rendered people with a locally rendered low-polygon photogrammetry background.

ABSTRACT

The pursuit of immersive telepresence has always aimed to capture
and stream 3D environments, enabling remote viewers to observe
scenes from any view angle. However, realizing this vision remains
demanding, especially with current mobile AR/VR devices, due to
intricate scene details, network latency, and bandwidth constraints.
This demo introduces MeshReduce, an innovative approach that
integrates a novel distributed 3D scene capture technique with a
split rendering framework. Our demo shows a prototype of a cross-
platform, live 3D telepresence system that can be viewed on standard
web browsers. The capture setup consists of multiple depth sensors,
capturing users and the background scene in real time. MeshReduce
uniquely allows for real-time rendering of remotely captured 3D
scenes, seamlessly merging them with content on the user’s device.

Index Terms: Computing methodologies—Computer graphics—
Graphics systems and interfaces—Mixed / augmented reality; Infor-
mation systems—Information systems applications—Multimedia
information systems—Multimedia content creation

1 INTRODUCTION

Immersive telepresence, crucial in logistics, healthcare, and hospi-
tality, relies on real-time 3D scene capture and streaming, merging
high-rate data from various sensors to comprehensively visualize an
environment. Systems like Holoportation [5], Volograms [7], and
Project Starline [3] have been pioneering this domain. However,
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operating these systems effectively over standard networks, with the
presence of background traffic, remains a significant challenge.

Capturing 3D scenes traditionally involves either generating RGB-
D, point cloud [1], or creating textured meshes [8]. However, the
former requires clients to convert large-scale scenes into geometries
for rendering, increasing the graphics load. In contrast, textured
meshes can be decimated to achieve significantly less scene com-
plexity without sacrificing texture resolution and perceptual quality,
making it a more efficient representation for 3D spaces.

Traditional 3D scene capture methods struggle with high computa-
tional loads and memory usage, particularly for detailed, large-scale
scenes. Systems like Holoportation require substantial GPU mem-
ory, and streaming 3D content, especially with interactive AR/VR
elements, often leads to significant latency. Although existing re-
search [9] explores real-time compression and streaming of 3D
human performance, it fails to composite interactive VR content
with real-time captured environments effectively. This necessitates
improved methods to blend interactive virtual elements with real-
time, high-resolution 3D captures, balancing low-latency interaction
with superior rendering quality.
MeshReduce demonstrates an end-to-end telepresence system

that addresses these challenges. First, it uses a network of depth
sensors to capture spaces in real-time at scale. Through deploying
compute nodes directly at the sensor side, MeshReduce efficiently
converts the sensor data into the meshes without suffering from
compute and memory bounds [2]. In addition, a merging server
takes in these intermediate meshes from sensors and incrementally
merges them into a full scene description. Secondly, MeshReduce
uses RenderFusion [4], a split rendering framework, to effectively
balance latency and visual quality, allowing an optimized distribu-
tion of rendering tasks: contents that are complex and exceed local
compute capacity are offloaded to remote servers, while interactive
virtual content that requires low latency response is rendered locally
on the device. MeshReduce combines these two approaches to pro-
duce a seamless and immersive telepresence experience, effectively
merging remotely streamed spaces with interactive virtual content.
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Figure 2: MeshReduce’s end-to-end scene capture, merge, and rendering pipeline.

2 SYSTEM OVERVIEW

MeshReduce leverages sensor side compute nodes to perform partial
scene reconstruction. It supports heterogeneous sensors such as
RGB-D cameras and LiDARs. A merging server pulls the partial
reconstructions together and merges them into a single scene. On
the client side, a split rendering approach is used to composite
remotely rendered high-complexity content with locally rendered
latency-sensitive content. Fig. 2 shows a system block diagram.

2.1 Distributed 3D Scene Capture
To address the challenges around GPU memory limitations and com-
pute latency, MeshReduce employs a distributed capture pipeline.
This setup involves multiple compute nodes, each dedicated to a
single camera. On these nodes, per-camera scene reconstruction
is performed. Specifically, we use the Truncated Signed Distance
Function to model an implicit surface representation, followed by
Marching Cubes for mesh extraction. For mesh decimation, we
implement a parallel Quadric-Error Metric surface decimation. The
system efficiently combines these individual camera feeds into a uni-
fied 3D model from separate compute nodes. Each node, equipped
with adequate GPU resources, is capable of handling the scene recon-
struction and decimation for its respective camera, ensuring minimal
latency in the process.

2.2 Mesh Merging
After gathering individual sensor reconstructions, MeshReduce in-
tegrates them into a single 3D model at the merging server. The-
oretically, merging mesh models involves combining data and re-
moving duplicate surfaces. However, inaccuracies in camera cal-
ibration and depth noise often lead to misalignments. To address
this, MeshReduce identifies and retains only the visible mesh layers
through raycasting, discarding obscured parts. It then merges mesh
edges by connecting the nearest neighboring vertices. This approach
streamlines the integration process, producing a unified final model.

2.3 Split Rendering
Our viewing application is built using ARENA [6] and can run on
web browsers on standalone WebXR-enabled headsets for cross-
platform compatibility. Rendering live 3D meshes at full resolution
on thin WebXR clients would be nearly impossible due to the mas-
sive data rates and rendering power required. Instead of decimating
the meshes even further, which would reduce quality, we offload ren-
dering of the live meshes to a nearby, powerful server. Additionally,
to keep user-perceived latency low, we employ split rendering. Our
solution divides the scene into high-resolution elements rendered by
a remote server (live 3D meshes) and low-latency objects rendered
on the headset (controller models and UI elements).

The server streams a virtual camera frame synchronized to a
user’s head pose to the client as video (we stream a stitched side-by-
side color + depth frame). The viewing application then reprojects
the color frames to mask motion-to-photon latencies for head move-
ments. The locally rendered objects are rendered with a standard
GPU rendering pipeline, and the result is composited with the repro-
jected color frame, using the depth frame to account for local-remote

object occlusions. With this, we are able to render a complex, live
volumetric video on a standard web browser without sacrificing
interaction latency.
During the demo, we present several portions of our system:

• We show a live 3D capture of the demo area, reconstructed in
real-time, using several Azure Kinect cameras.

• We let participants try an immersive viewing application run in
a web browser on AR/VR headsets (i.e., Magic Leap 2, Quest
Pro), tablets, and laptops. Headset users are able to view the
live 3D textured mesh in full stereoscopic 3D.

• We also have a small interactive application to show that user-
perceived latency for inputs is low.
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